Ultrasonic Cavitation in Liquids

Ultrasonic waves of high intensity ultrasound generate cavitation in liquids. Cavitation causes extreme effects locally, such as liquid jets of up to 1000km/hr, pressures of up to 2000atm and temperatures of up to 5000 Kelvin.

Background

Ultrasonic waves of high intensity ultrasound generate cavitation in liquids.

When sonicating liquids at high intensities, the sound waves that propagate into the liquid media result in alternating high-pressure (compression) and low-pressure (rarefaction) cycles, with rates depending on the frequency. During the low-pressure cycle, high-intensity ultrasonic waves create small vacuum bubbles or voids in the liquid. When the bubbles attain a volume at which they can no longer absorb energy, they collapse violently during a high-pressure cycle. This phenomenon is termed cavitation. During the implosion very high temperatures (approx. 5,000K) and pressures (approx. 2,000atm) are reached locally. The implosion of the cavitation bubble also results in liquid jets of up to 280m/s velocity.